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1. Introduction to Rings

1.1. Basic Definitions and Examples

Definition 1.1 (ring). A ring R is a set together with two binary operations + and · (called

addition and multiplication) satisfying the following axioms:

(i) (R,+) is an Abelian group

(ii) · is associative, i.e. (a ·b) · c = a · (b · c) for all a,b,c ∈ R

(iii) the distributive laws hold in R, i.e. for all a,b,c ∈ R, we have

(a+b) · c = (a · c)+(b · c) and a · (b+ c) = (a ·b)+(a · c)

In Definition 1.1, we usually write ab in place of a ·b or a×b for a,b ∈ R. The additive identity of

R will always be denoted by 0.

Definition 1.2 (commutative ring). R is commutative if · is commutative.

Definition 1.3 (multiplicative identity). R is said to have a multiplicative identity (or contain

a 1) if there exists an element 1 ∈ R such that

1 ·a = a ·1 = a for all a ∈ R.

Definition 1.4 (division ring). A ring R with identity 1, where 1 ̸= 0, is a division ring if every

non-zero element a ∈ R has a multiplicative inverse, i.e.

for any 0 ̸= a ∈ R there exists b ∈ R such that ab = ba = 1.

Definition 1.5 (field). A commutative division ring is a field.

Example 1.1. Z is a ring. In fact it is a commutative ring but not a division ring. Hence, Z is not a

field.

Example 1.2. Q,R,C are fields.

Example 1.3. Let n be a positive integer. Z/nZ is a commutative ring, but in general, it may not

have multiplicative inverses. If n = p for some prime p, then Z/pZ is a field.

Example 1.4. 2Z is a commutative ring without identity.

Example 1.5. The trivial ring R = {0} is a commutative ring with identity 1 = 0.

Example 1.6. The following sets can be regarded as rings:

Pn (R) which is the set of polynomials of degree at most n with coefficients in R

C0 (R) which is the set of continuous functions on R

C1 (R) which is the set of differentiable functions on R
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Definition 1.6 (endomorphism ring). Let V be a vector space over R. Then, the endomorphism

ring EndR (V ) is defined as follows:

EndR (V ) = {ϕ : ϕ ∈ Hom(R,R)}

Here, Hom(R,R) is the set of homomorphisms from R to itself.

We will formally relook at Definition 1.6 in Definition 4.7.

Example 1.7 (endomorphism ring). The endomorphism ring EndR (V ) of a vector space over R is

an example of a non-commutative ring. To see why, consider

A =

[
1 1

0 0

]
and B =

[
0 0

0 1

]
so AB =

[
0 1

0 0

]
and BA =

[
0 0

0 0

]
.

Example 1.8 (quaternions). Recall from MA2202 that the quaternions Q8 is an example of a non-

commutative ring. In fact, this is historically the first example of such a ring. To see why, we have

i, j,k ∈ Q8 where i j = k but ji =−k ̸= k.

Proposition 1.1. Let R be a ring. Then, the following hold:

(i) 0a = a0 = 0 for all a ∈ R

(ii) (−a)b = a(−b) =−ab for all a,b ∈ R

(iii) (−a)(−b) = ab for all a,b ∈ R

(iv) If R has a multiplicative identity, it is unique and −a = (−1)a

Example 1.9. Let

Q
[√

2
]
=
{

a+b
√

2 : a,b ∈Q
}
.

It is a well-known fact that Q
[√

2
]

is a ring. We claim that Q
[√

2
]

is a field, i.e. we need to deduce

that
1

a+b
√

2
is of the form c+d

√
2 where c,d ∈Q.

This is simply the process of rationalising the denominator that one would recall from Secondary

School. That is,

1
a+b

√
2
=

a−b
√

2
a2 −2b2 so we can choose c =

a
a2 −2b2 and d =− b

a2 −2b2 .

Definition 1.7 (zero divisor). Let R be a ring. A non-zero element a ∈ R is a zero divisor if

there exists a non-zero b ∈ R such that either ab = 0 or ba = 0.
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Definition 1.8 (unit). Let R be a ring with a multiplicative identity. An element u ∈ R is a unit

if

there exists some v ∈ R such that uv = vu = 1.

The set of units in R is denoted by R∗.

Remark 1.1. A zero divisor may not be a unit.

Proposition 1.2. R× is a group under multiplication, referred to as the group of units of R.

Example 1.10. The ring Z has no zero divisors and its only units are ±1.

Example 1.11. The group of units of Z/nZ is (Z/nZ)×. Recall from MA1100 or MA2202 that

(Z/nZ)× = {a ∈ Z/nZ : gcd(a,n) = 1} .

All elements in (Z/nZ)× are zero divisors. In sum, every non-zero element of Z/nZ is either a unit

or a zero divisor.

Definition 1.9 (integral domain). A commutative ring with multiplicative identity 1 is an

integral domain if it has no zero divisors.

Example 1.12. Every field is an integral domain. To see why, suppose a,b ∈ F for some field F

such that a ̸= 0 and ab = 0. Considering ab = 0, multiplying both sides by a−1, we obtain b = 0.

Example 1.13. Z is an integral domain.

Example 1.14. The ring Z
[√

2
]
=
{

a+b
√

2 : a,b ∈ Z
}

is an integral domain.

Definition 1.10 (Gaussian integer). Let

Z [i] = {a+bi : a,b ∈ Z} ⊆ C denote the set of Gaussian integers.

Example 1.15. The Gaussian integers Z [i] is a commutative ring with identity and its unit elements

are ±1,±i.

Proposition 1.3 (cancellation property). Suppose x,y,z are elements in an integral domain

and xy = xz. Then, either x = 0 or y = z.

Proof. We have x(y− z) = 0 so x = 0 or y− z = 0. By definition of an integral domain (Definition

1.9), it follows that x = 0 or y = z.

Proposition 1.4. Any finite integral domain is a field.
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Proof. Let R be a finite integral domain and a ∈ R be non-zero. By the cancellation law, the map

x 7→ ax is injective. Since R is finite, this map is surjective, i.e.

there exists b ∈ R such that ab = 1, i.e. a is a unit in R.

Since a was an arbitrary non-zero element, then R is a field.

Corollary 1.1 (Sadhukhan). If p is a prime, then Z/pZ is a field.

One can prove Corollary 1.1 using Euclid’s lemma. Moreover, one can prove a stronger result

(generally covered in MA3265 too) that

Z/nZ is a field if and only if n is prime.

Definition 1.11 (subring). A subring of a ring R is a subgroup of R that is closed under

multiplication.

Proposition 1.5 (subring criterion). A non-empty subset S of a ring R is a subring if S is

closed under subtraction and multiplication, i.e.

a,b ∈ S implies a−b ∈ S and ab ∈ S.

Example 1.16. Z is a subring of Q and Q is a subring of R.

Example 1.17. nZ= {nk ∈ Z : k ∈ Z} is a subring of Z.

Example 1.18. Z [i] is a subring of C.

1.2. Polynomial Rings, Matrix Rings, and Group Rings

Definition 1.12 (polynomial ring). Let R be a commutative ring with multiplicative identity

1. Let x be a formal variable. We define the polynomial ring R [x] as follows:

R [x] = {a0 +a1x+ . . .+anxn ∈ R : n ∈ Z≥0} .

Addition and multiplication on R [x] are defined in the obvious/naive way.

Each polynomial should be regarded as a formal expression instead of a function.

Lemma 1.1. If R is an integral domain, then R [x] is an integral domain.

Definition 1.13 (matrix ring). Let R be a ring with multiplicative identity 1 (or I). Define the

matrix ring Mn×n (R) to be the set consisting of(
ai j

)
n×n where ai j ∈ R.
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Addition and multiplication on Mn×n (R) are defined as per matrix multiplication in Linear

Algebra.

Example 1.19. If R = R (recall that R is a field from Example 1.2) so R is a multiplicative identity

with 1. Then, Mn×n (R) is the usual matrix algebra. We have the usual subring of diagonal matrices,

as well as the subring of upper triangular matrices.

Definition 1.14 (group ring). Let R be a commutative ring with multiplicative identity 1. Let

G be a finite group. Define the group ring R [G] to be the set consisting of

∑
g∈G

agg where ag ∈ R.

The addition on R [G] is defined in the obvious way.

Example 1.20. We discuss multiplication in R [G]. We have

(agg+ahh)
(
ag′g

′+ah′h
′)= agag′gg′+ahag′hg′+agah′gh′+ahah′hh′.

Here, gg′,hg′,gh′,hh′ denote group multiplication in G.

Example 1.21. We shall discuss the structure of R [Z/2Z]. Note that this group ring consists of

formal linear combinations of the group elements with coefficients in R. Hence,

R [Z/2Z] = {a0e0 +a1e1 : a0,a1 ∈ R} .

Here, e0,e1 ∈ Z/2Z, with e0 being the identity element of Z/2Z.

Lemma 1.2. Let R be a commutative ring with multiplicative identity 1 and G be a finite

group. Then, the following hold:

(i) Let e ∈ G be its identity element. Then, 1e is the identity of the ring R [G].

(ii) Let e ̸= g ∈ G. Then, 1−g is a zero divisor.

(iii) Let H ≤ G. Then, R [H] is a subring of R [G].

(iv) R [G] is commutative if and only if G is commutative

Definition 1.15 (product of rings). Let S and R be two rings. Define their product S×R to be

the same as the product of sets. Addition and multiplication are defined component-wise, i.e.

(a,b)+(c,d) = (a+ c,b+d) and (a,b) · (c,d) = (ac,bd) .
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1.3. Ring Homomorphisms and Quotient Rings

Definition 1.16 (ring homomorphism). Let R and S be rings. A ring homomorphism is a map

ϕ : R → S satisfying ϕ (a+b) = ϕ (a)+ϕ (b) and ϕ (ab) = ϕ (a)ϕ (b) for all a,b ∈ R.

Definition 1.17 (kernel). The kernel of a ring homomorphism ϕ , denoted by kerϕ , is the

following set:

kerϕ = {r ∈ R : ϕ (r) = 0S} .

So, the kernel can be viewed as a homomorphism of additive groups.

Example 1.22. The quotient map Z→ Z/nZ is a ring homomorphism with kernel nZ.

Example 1.23. The embedding of the subring nZ→Z is a ring homomorphism with a trivial kernel.

Example 1.24. Consider the map

ϕ : C [x]→ C where f (x) 7→ f (a) .

The kernel is given by

kerϕ = { f (x) ∈ C [x] : f (a) = 0}= {(x−a) f (x) : f (x) ∈ C [x]} .

Lemma 1.3. Let ϕ : R → S be a ring homomorphism. Then,

imϕ is a subring of S and kerϕ is a subring of R.

Definition 1.18 (ring isomorphism). A bijective ring homomorphism is an isomorphism. Two

rings R and S are isomorphic if

there exists an isomorphism between R and S and we denote using R ∼= S.

Definition 1.19 (ideal). Let R be a ring and I ⊆ R.

(i) I is a left ideal of R if I is an additive subgroup of R and rI ⊆ I for any r ∈ R

(ii) I is a right ideal of R if I is an additive subgroup of R and Ir ⊆ I for any r ∈ R

(iii) I is an ideal of R if I is both a left ideal and a right ideal of R

Example 1.25 (principal ideal). nZ = (n) is a principal ideal in Z. Here, (n) denotes the ideal

generated by n, i.e. the smallest ideal containing n. By the term ‘principal’, we mean that nZ is

generated by only one element (Definition 1.25).

In general, we write rR for {rx : x ∈ R}, which is the right ideal of R generated by r. When R is

commutative, we simply write (r).

Lemma 1.4. Let ϕ : R → S be a ring homomorphism. Then, kerϕ is an ideal of R.
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Proof. Let x,y ∈ kerϕ . Then,

ϕ (x− y) = ϕ (x)−ϕ (y) = 0−0 = 0

so x− y ∈ kerϕ so kerϕ is an additive subgroup of R. Then, let r,r′ ∈ R and x ∈ kerϕ . So,

ϕ
(
rxr′

)
= ϕ (r)ϕ (x)ϕ

(
r′
)
= ϕ (r) ·0 ·ϕ

(
r′
)
= 0

so rxr′ ∈ kerϕ . Here, we verified that kerϕ is a two-sided ideal of R (or in short, just an ideal) by

proving (i) and (ii) in Definition 1.19 concurrently.

Definition 1.20 (quotient ring). Let I ⊆R be an ideal. Define the quotient ring R/I as follows:

we can view it as an Abelian group, where multiplication is defined as follows:

R/I ×R/I → R/I where (a+ I,b+ I) 7→ ab+ I for all a,b ∈ R.

The image of a ∈ R in R/I is often denoted by a.

Definition 1.21 (sum of ideals). Let I and J be ideals of R. Define

I + J = {a+b : a ∈ I,b ∈ J} which is an ideal of R.

Definition 1.22 (product of ideals). Let I and J be ideals of R. Define

IJ =
{
∑ab : a ∈ I,b ∈ J

}
which is an ideal of R.

Consequently, for any n ∈ N, In is an ideal of R.

Theorem 1.1 (first isomorphism theorem). Let ϕ : R → S be a ring homomorphism. Then,

R/kerϕ ∼= ϕ (R) .

Also, for any ideal I ⊆ R, the quotient map

π : R → R/I where a 7→ a+ I = a

is a surjective ring homomorphism with kernel I. As such, if I ⊆ kerϕ , then ϕ factors through

R/I, i.e. we have the commutative diagram shown in Figure 1, where ϕ (a) = ϕ (a) for a ∈ R.

In fact, this is the universal property of the quotient ring.

Example 1.26. Let F be a field. Then, F [x]/(x)∼= F .
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R S

R/I

φ

π

φ

Figure 1: First isomorphism theorem for rings

Theorem 1.2 (second isomorphism theorem). Let R be a ring. Let A be a subring and B be an

ideal of R. Then, define

A+B = {a+b : a ∈ A,b ∈ B} to be a subring of R.

We have the following isomorphism:

(A+B)/B ∼= A/(A∩B)

Next, let I ⊆ J ⊆ R be ideals of R. Then, we have

R/J ∼= (R/I)/(J/I) .

See Figure 2 for the commutative diagram.

R

R/I (R/I)/(J/I)

R/J

πI

πJ/I

πJ

∼=

Figure 2: Second isomorphism theorem for rings

1.4. Properties of Ideals

Definition 1.23 (smallest ideal). Let A ⊆ R be a subset. Let (A) denote the smallest ideal in

R generated by A, so

(A) =
⋂

A⊆J
J is an ideal of R

J = RAR =
{
∑rar′ : r,r′ ∈ R,a ∈ A

}
.
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Definition 1.24 (left and right ideals). Let

RA =
{
∑ra : r ∈ R,a ∈ A

}
and AR =

{
∑ar : r ∈ R,a ∈ A

}
to be the left ideal and right ideal generated by A respectively.

Definition 1.25 (principal ideal). An ideal generated by a single element x is called a principal

ideal, denoted by (x).

Definition 1.26 (finitely generated ideal). An ideal that is generated by a finite set is a finitely

generated ideal.

Example 1.27. 0 = (0) and R = (1) are trivial examples of principal ideals.

Example 1.28. Recall Example 1.25 where we mentioned that (n) is a principal ideal.

Example 1.29. The ideal (2,x)⊆ Z [x] is not principal.

Example 1.30. The ideal
(
2x,2x2,2x3, . . .

)
⊆ 2Z [x] is not finitely generated.

Lemma 1.5. Let R be a ring. For any ideal I ⊆ R,

I = R if and only if I contains a unit.

Furthermore, if R is commutative, then

R is a field if and only if R has only two ideals which are 0 and R.

Definition 1.27 (maximal ideal). Let I ⊆ R be an ideal of R. I is said to be maximal if

I ̸= R and for any ideal J containing I we have either J = I or J = R.

Corollary 1.2. Let R be a commutative ring. Then, the following hold:

(i) R is a field if and only if (0) is a maximal ideal

(ii) I is a maximal ideal of R if and only if R/I is a field

Example 1.31. For any prime p, the ideal (p)⊆ Z is maximal.

Example 1.32. The ideal (x−a) ∈ C [x] for any a ∈ C is a maximal ideal.

Proposition 1.6. Let R be a ring with multiplicative identity 1. Then, any ideal I is contained

in a maximal ideal of R.

Proof. Use Zorn’s lemma.
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Definition 1.28 (prime ideal). Let R be a commutative ring with multiplicative identity 1. An

ideal P ⊆ R is a prime ideal if

P ̸= R and for any ab ∈ P either a ∈ P or b ∈ P.

Example 1.33. For any prime p, (p)⊆ Z is a prime ideal.

Example 1.34. (0)⊆ Z is a prime ideal.

Lemma 1.6. Let R be a commutative ring with multiplicative identity 1. Let I ⊆ R be an ideal.

Then,

I is a prime ideal if and only if R/I is an integral domain.

So, maximal ideals are also prime ideals.

Definition 1.29 (nilradical). Let R be a commutative ring with multiplicative identity 1. Define

the nilradical of R to be

N(R) = set of nilpotent elements of R = {x ∈ r : xn = 0 for some n ∈ Z≥0} .

Lemma 1.7. Let R be a commutative ring with multiplicative identity 1. Then, N(R) is an

ideal of R.

Proof. Let x,y ∈N(R). Then, there exist n,m ∈ Z≥0 such that xn = ym = 0. Note that for any r ∈ R,

we have (rx)n = rnxn = 0, where we used the fact that R is commutative, so rx ∈N(R).

Now, let l = 2max{m,n}, so

(x+ y)l =
l

∑
i=0

l!
i!(l − i)!

xiyl−i = 0

and it follows that x+ y ∈N(R). As such, N(R) is an ideal of R.

1.5. Rings of Fractions

Definition 1.30 (field of fractions). Let R be an integral domain. Let D = R\ {0}. The field

of fractions of R, of the quotient field of R, denoted by Q, is defined as follows:

Q̃ = {(r,d) : r ∈ R,d ∈ R\{0}}

Then, define an equivalence relation on Q̃ via

(r,d)∼
(
r′,d′) if and only if rd′ = r′d.

Then, define Q = Q̃/∼. The equivalence class (r,d) is often denoted by r/d.
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Theorem 1.3. Define addition on Q as follows:

r
d
+

s
t
=

rt +ds
dt

which is well-defined

Define multiplication on Q as follows:

r
d
× s

t
=

rs
dt

which is well-defined

Then, Q is a field.

Lemma 1.8. There exists an embedding

ι : R → Q such that ι (r) =
r
1
=

rd
d

for any d ̸= 0.

Example 1.35. Q is the field of fractions of Z.

Proposition 1.7. Let R be an integral domain with field of fractions Q. Let F be a field

containing R. Then,

F contains Q so Q is the smallest field containing R.

1.6. The Chinese Remainder Theorem

We start with a motivating fact from MA1100. Let m,n ∈ Z be coprime. By Bézout’s lemma (and

its converse), this is equivalent to saying that

there exist a,b ∈ Z such that am+bn = 1.

The new thing to take note of is that

Z/mnZ∼= Z/mZ×Z/nZ

as an isomorphism of Abelian groups. This is precisely the Chinese remainder theorem. We will

encounter another variant of the Chinese remainder theorem (for principal ideal domains) pretty soon

in Theorem 2.4.

Definition 1.31 (coprime ideals). Let R be a commutative ring with multiplicative identity 1.

Two ideals A and B of R are coprime if A+B = R.

One should note that Definition 1.31 is consistent with the definition in Z.

Theorem 1.4. Let A1, . . . ,Ak be pairwise coprime ideals of R. Then, we have the following

isomorphism:

R/A1 . . .Ak → R/A1 × . . .×R/Ak where r+A1 . . .Ak 7→ (r+A1, . . . ,r+Ak)



MA3201 ALGEBRA II NOTES Page 14 of 46

Example 1.36. Let pi ∈ Z be distinct primes for 1 ≤ i ≤ k. Then, there exists x ∈ Z unique mod

p1 . . . pk such that

x ∼= xi (mod pi) for any xi ∈ Z.
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2. Euclidean Domains, Principal Ideal Domains, and Unique

Factorization Domains

2.1. Euclidean Domains

Definition 2.1 (norm). Let R be an integral domain. A norm on R is a function

N : R → Z≥0 such that N (0) = 0.

Definition 2.2 (Euclidean domain). Let R be an integral domain. We say that R is a Euclidean

domain (ED) if we can perform the following division algorithm with respect to some norm N,

which is for any a,b ∈ R with b ̸= 0, there exist q,r ∈ R such that

a = bq+ r with r = 0 or N (r)< N (b) .

q is called the quotient and r is called the remainder.

Example 2.1. Z is a Euclidean domain with N (r) = |r|. Then, the division is exactly the division on

Z.

Example 2.2. Any field is a Euclidean domain with any norm, so the choice of the norm is not

unique.

Example 2.3. The polynomial ring R [x] (or over any field) is a Euclidean domain with N ( f ) =

deg( f ).

Proposition 2.1 (Gaussian integers forms a Euclidean domain). The ring of Gaussian integers

Z [i]⊆ C

with the standard norm N (a+bi) = a2 +b2 is a Euclidean domain.

Proof. Let α,β ∈ Z [i] with β ̸= 0. Let α/β = x+ yi ∈Q [i]⊆ C. Also, let

m,n ∈ Z such that |x−m| ≤ 1
2

and |y−n| ≤ 1
2
.

Then,

α = β (x+ yi)

= β [m+ x−m+(n+ y−n) i]

= β (m+ni)+β [x−m+(y−n) i]

= β (m+ni)+ γ

Then,

N (γ) = N (β )N (x−m+(y−n) i)≤ 1
2

N (β )

and the result follows. One notes that the quotient and remainder are not unique in this case.
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2.2. Principal Ideal Domains

Definition 2.3 (principal ideal domain). A principal ideal domain (PID) is an integral domain

in which every ideal is a principal ideal.

Example 2.4. A field is a PID.

Example 2.5. The ring Z is a PID. It is also an ED.

Definition 2.4. Let R be a commutative ring and a,b ∈ R with b ̸= 0.

(i) a is a multiple of b or b is a divisor of a if

there exists x ∈ R such that a = xb.

We write b | a.

(ii) A greatest common divisor of a and b is a non-zero element d such that

d | a and d | b and for any d′ which divides both a and b we have d′ | d.

Lemma 2.1. Let R be an integral domain. If d,d′ are both greatest common divisors of a and

b, then

d′ = ud for some unit u.

Proposition 2.2. Let R be a PID. Let a,b be non-zero such that (a,b) = (d). Then, d =

gcd(a,b). Hence, the gcd always exists and it is of the form ax+by.

Proposition 2.3. Every non-zero prime ideal in a PID is a maximal ideal.

Definition 2.5 (Noetherian ring). A commutative ring R is said to be Noetherian if it satisfies

the following ascending chain condition on ideals. That is, if

I1 ⊆ I2 ⊆ . . . is a chain of ideals of R,

then, there exists m ∈ N such that Ik = Im for all k ≥ m. This is equivalent to saying that

∞⋃
i=1

Ii = Im.

Example 2.6. Many rings that we have encountered are Noetherian. Take Z and Z [x] for example.

Theorem 2.1. Every PID is Noetherian.

Proposition 2.4. Every ED is a PID.
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Proof. Let R be an ED and I be a non-zero ideal of R. Among the non-zero elements of I, let b be

such that d (b) is minimum among all elements from I. Then, we shall prove that I = ⟨b⟩. It is clear

that ⟨b⟩ ⊆ I. For a ∈ I,

there exist q,r ∈ R such that a = bq+ r where r = 0 or d (r)< d (b) .

Note that r = a−bq ∈ I. d (r) cannot be less than d (b), otherwise it would contradict the minimality

of d (b). So, r = 0. This shows that a ∈ ⟨b⟩, so I ∈ ⟨b⟩. We conclude that I = ⟨b⟩.

Theorem 2.2 (Euclidean algorithm). Let R be a Euclidean domain and a,b ∈ R such that both

are non-zero. Then,

one can use the Euclidean algorithm to compute gcd(a,b) .

We will not discuss how the Euclidean algorithm works as the reader should have prior knowledge

of it from MA1100.

Now, recall how factorisation works in Z. We wish to generalise this idea to more general rings.

Definition 2.6 (irreducibles and units). Let R be an integral domain. Suppose r ∈R is non-zero

and is not a unit. Then,

r is irreducible over R if whenever r = ab with a,b ∈ R then either a or b is a unit.

Otherwise, r is reducible.

Definition 2.7 (associate). Let R be an integral domain. If

a = ub where u is a unit of R then a and b are associates.

Definition 2.8 (prime ideal). Let R be an integral domain. A non-zero element p ∈ R is called

a prime in R if (p) is a prime ideal. In other words,

p | ab implies p | a or p | b

We know that Z is an integral domain so Definition 2.8 is in fact Euclid’s lemma! Moreover,

the remarkable fact here is that irreducible and prime feels the same but they are actually different.

Without the abstractions coined in Definitions 2.6 and 2.8, this would be difficult to distinguish.

Lemma 2.2. In an integral domain, a prime element is always irreducible.

Proof. Let p be a prime and suppose p = ab. Then, pa′ = a or pb′ = b. Suppose the equation pa′ = a

holds. Then, a = pa′ = aba′, which implies ba′ = 1, so b is a unit.
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Proposition 2.5. In a PID, a non-zero element is prime if and only if it is irreducible.

Example 2.7. We shall verify that 1+
√
−3 is irreducible but not prime in Z

[√
−3

]
.

Solution. Note that N
(
a+b

√
−3

)
= a2 + 3b2. Suppose 1 +

√
−3 can be factorised as xy, where

neither x nor y is a unit. Then,

N (xy) = N (x)N (y) = 4 which implies N (x) = N (y) = 2.

However, there are no integers x and y satisfying a2 + 3b2 = 2, which implies that either x or y is a

unit and so 1+
√
−3 is an irreducible.

Now, we prove that 1+
√
−3 is not a prime. We see that(

1+
√
−3

)(
1+

√
−3

)
= 4 = 2 ·2

so
(
1+

√
−3

)
| 4. Suppose

(
1+

√
−3

)
| 2. Then, there exist a,b ∈ Z such that(

1+
√
−3

)(
a+b

√
−3

)
= 2 so a−3b+(a+b)

√
−3 = 2.

Hence, a−3b = 2 and a+b = 0 but no integers satisfy these two equations. □

Example 2.8. We shall verify that 7 is irreducible over Z
[√

5
]
.

Solution. Suppose on the contrary that 7 = xy, where neither x nor y is a unit. Then, N (7) =

N (x)N (y) = 49. As neither x nor y is a unit, then N (x) = 7. Suppose x = a+ b
√

5. Then, there

exist a,b ∈ Z such that
∣∣a2 −5b2

∣∣ = 7, i.e. a2 − 5b2 = 7 or a2 − 5b2 = −7. Working in modulo 7, it

is easy to see that the only solution is (a,b) = (0,0). However, this implies that a and b are divisible

by 7. We write a = 7r and b = 7s, where r,s ∈ Z. Then, x = 7
(

r+ s
√

5
)

, which implies that N(x) is

divisible by 49, which is a contradiction. □

2.3. Unique Factorisation Domains

Definition 2.9 (unique factorisation domain). A unique factorisation domain (UFD) is an

integral domain R in which every non-zero element r ∈ R which is not a unit has the following

two properties:

(i) r can be written as a finite product of irreducibles pi of R, i.e.

r = p1 . . . pn

(ii) the decomposition r = p1 . . . pn is unique up to multiplication by units and permutation,

i.e. if there exist irreducibles qi such that r = q1 . . .qm, then m = n and qi = pi after

relabelling

Example 2.9. We can uniquely decompose

6 = 2 ·3 = (−2) · (−3) in Z.
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Proposition 2.6. In a UFD, a non-zero element is prime if and only if it is irreducible.

Proposition 2.7. Let a and b be two non-zero elements of a UFD R. Suppose

a = upa1
1 . . . pan

n and a = vpb1
1 . . . pbn

n are the prime factorisations of a and b,

where u and v are units, pi are primes and the exponents ai,bi ∈ Z≥0. Take p0
i = 1. Then,

d = pd1
1 . . . pdn

n where di = min{ai,bi} is a gcd of a and b.

Theorem 2.3. Every PID is a UFD.

Proof. Let R be a PID and a0 be any non-zero non-unit in R. We need to prove the following:

• a0 is a product of irreducibles (the product might consist of only one factor)

• the factorisation is unique up to associates and the order in which the factors appear

We address the first point. If a0 is an irreducible, we are done. If not, write a0 = b1a1, where neither

b1 nor a1 is a unit and a1 ̸= 0. If a1 is not irreducible, write a1 = b2a2, where neither b2 nor a2 is

a unit and a2 ̸= 0. In general, an = bn+1an+1 for all n ∈ N , where b1,b2, . . . are not units in R and

a0,a1,a2, . . . are non-zero elements of D.

So, ⟨a0⟩ ⊆ ⟨a1⟩ ⊆ . . . is a strictly increasing chain of ideals. By the ascending chain condition for

PIDs, this chain is finite, i.e. there exists r ∈ N such that ⟨ar⟩ = ⟨ar+1⟩ = . . .. In particular, ar is an

irreducible factor of a0. Thus, every non-zero non-unit in R has at least one irreducible factor.

Now, write a0 = p1c1, where p1 is irreducible and c1 is not a unit. If c1 is not irreducible, write

c1 = p2c2, where p2 is irreducible and c2 is not a unit. Repeat to obtain the following strictly increasing

chain of ideals: ⟨a0⟩ ⊆ ⟨c1⟩ ⊆ ⟨c2⟩ ⊆ . . ., which terminates eventually. Suppose there exists s ∈N such

that ⟨cs⟩= ⟨cs+1⟩. Then, cs is irreducible and a0 = p1 p2 . . . pscs, where each pi is irreducible. The first

result follows.

For the second point, suppose some a ∈ R has two different representations, i.e.

a = p1 p2 . . . pr = q1q2 . . .qs,

where the p’s and q’s are irreducible and repetition is permitted. If r = 1, then a is irreducible, and

consequently, s = 1 and p1 = q1, which supports the uniqueness of factorisation claim. Assume that a

can be expressed as a product of fewer than r irreducible factors in only one way. Since p1 | q1q2 . . .qs,

then it must divide some qi. Without a loss of generality, p1 | q1. Then, there exists u ∈ R (u is a unit)

such that q1 = up1.
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So, up1 p2 . . . pr = uq1q2 . . .qs, for which by cancellation, p2 . . . pr = uq2 . . .qs. The induction hypoth-

esis tells us that these two factorisations are identical up to associates and the order in which the

factors appear. We conclude that the same is true regarding the two factorisations of a.

Corollary 2.1. Every ED is a UFD.

Example 2.10. Z is an ED, a PID, and a UFD.

At this point, the following chain of inclusions should be quite obvious:

fields ⊆ ED ⊆ PID ⊆ UFD ⊆ integral domains ⊆ commutative rings ⊆ rings

Example 2.11. The ring Z [x] is a UFD but not a PID.

Example 2.12 (Motzkin). The ring

Z
[

1+
√
−19

2

]
is a PID but not an ED. This was the first example of a PID that is not an ED, which was given by

Israeli-American mathematician Theodore Motzkin.

Example 2.13. The ring Z
[√

−5
]

is an integral domain but not a UFD.

Theorem 2.4 (Chinese remainder theorem). Let R be a PID and r = upa1
1 . . . pan

n be the prime

factorisation of r. Then,

R/(r)∼= R/
(

pa1
1
)
×R/(pan

n ) .

We consider the ring Z [i] of Gaussian integers as an application and summary. With the standard

complex norm, we know that Z [i] is an ED, a PID, and aufd. Note that the norm is always ∈ Z≥0. We

have the following beautiful results (Theorems 2.5 and 2.6).

Theorem 2.5 (Fermat sum of two squares theorem). Let p ∈ Z be a positive prime. Then,

p = a2 +b2 for some a,b ∈ Z if and only if p = 2 or p ≡ 1 (mod4) .

The expression is unique up to multiplication by −1 and interchanging a and b.

Theorem 2.6. The irreducible elements in Z [i], up to multiplication by units, are as follows:

(i) 1+ i, which is of norm 2

(ii) p ∈ Z with p ≡ 3 (mod4)

(iii) a±bi, where

p = a2 +b2 = (a+bi)(a−bi) for p ≡ 1 (mod4) ,

where p is a prime in Z
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Corollary 2.2. The irreducible elements in Z [i] are either up to some unit u ∈ Z [i] and a prime

p ∈ Z, or a+bi with a2+b2 = p for some prime p ∈ Z. In particular, a prime p ∈ Z has at most

2 irreducible factors in Z [i].

Corollary 2.3. 1± i are irreducible over Z [i].

So, it remains to determine whether we can factor an odd prime p ∈ Z in the bigger ring Z [i].

Lemma 2.3. Let p be a prime in Z. If p ≡ 3 (mod4), then p is irreducible over Z [i].

Proof. Consider p = a2 +b2 in Z/4Z, for which p cannot be 3 mod 4.

Lemma 2.4. Let p be a prime, where p ≡ 1 (mod4). Then,

p |
(
n2 +1

)
for some n ∈ Z.

Proof. It suffices to show that the equation x2 +1 = 0 has a root in Z/pZ. Recall from MA2202 that

(Z/pZ)× is a cyclic group of order p− 1 (we will state it again in Proposition 3.4). As 4 | (p−1),

there exists r ∈ (Z/pZ)× of order 4, and the result follows.

Corollary 2.4. Let p be a prime, where p ≡ 1 (mod4). Then,

p = a2 +b2 = (a+bi)(a−bi) for some a,b ∈ Z.
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3. Polynomial Rings

3.1. Definitions and Basic Properties

In this section, we only consider commutative rings R with multiplicative identity 1 for polynomial

rings. Recall the polynomial ring R [x] (Definition 1.12), so by repeatedly adjoining the elements

x1, . . . ,xn, we define

R [x1, . . . ,xn] = R [x1, . . . ,xn−1] [xn] .

Proposition 3.1. Let S be a commutative ring with multiplicative identity 1. Let ϕ : R → S be

a ring homomorphism. Then, for any a1, . . . ,an ∈ S, there exists a unique ring homomorphism

ϕ̃ : R [x1, . . . ,xn]→ S such that ϕ̃ (r) = ϕ (r) and ϕ̃ (xi) = ai.

Proposition 3.2. Let I be an ideal of R. We consider I as a subset of R [x] and denote (I) = I [x]

to be the ideal generated by I in R [x]. We have the following isomorphism:

(R/I) [x]∼= R [x]/(I) .

So, if I is prime in R, then (I) is prime in R [x].

Proposition 3.3. Let F be a field. Then,

F [x] is an ED with the norm N ( f ) = deg( f ) .

Corollary 3.1. Let F be a field. Then, the following hold:

(i) F [x] is a PID, hence a UFD

(ii) Let f (x) ∈ F [x]. Then,

f (a) = 0 for a ∈ F if and only if (x−a) | f (x)

(iii) Let f (x) ∈ F [x] be of degree n. Then, f (x) has at most n roots in F counting multiplicity

(iv) Let f (x) ∈ F [x]. Then,

F [x]/( f ) is a field if and only if f is prime.

(v) If p(x) ,q(x) ∈ F [x] are distinct irreducible polynomials, i.e. (p(x)) ̸= (q(x)), then they

are coprime

(vi) Let

f (x) = pa1
1 (x) . . . pan

n (x) be an irreducible factorisation of f (x) .

Then,

F [x]/( f (x))∼= F [x]/
(

pa1
1 (x)

)
× . . .×F [x]/(pan

n (x))
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Proposition 3.4. Let F be a field and G ⊆ F× be a finite subgroup. Then, G is cyclic. So,

(Z/pZ)× ∼= Z/(p−1)Z is a cyclic group for any prime p.

Proposition 3.4 was used in the proof of Lemma 2.4. Moreover, the proof of this proposition requires

a well-known result known as the fundamental theorem of finitely generated Abelian groups.

Definition 3.1 (polynomial functions). Let F be a field. Then, define the set of polynomial

functions on F , denoted by P , to be functions from F to F of the form

F → F where x 7→ f (x) =
n

∑
i=0

aixi.

Note that the set of polynomial functions on F , denoted by P , is obviously a ring under pointwise

addition and multiplication. As such, we have an obvious ring homomorphism F [x]→P (Example

3.1).

Example 3.1. Consider the ring of polynomial functions on Z/2Z.

Proposition 3.5. The ring homomorphism

ϕ : F [x]→P is an isomorphism if and only if F is infinite.

Proof. Clearly, ϕ is a surjective ring homomorphism. As such, it suffices to prove that

kerϕ = {e} if and only if F is infinite.

We first prove the forward direction by contraposition. Suppose F is a finite set. Then, F =

{a1, . . . ,an}. So, the image of the non-zero polynomial (x−a1) . . .(x−an) is the zero function, so

kerϕ ̸= {e}.

We then prove the reverse direction. Suppose F is an infinite set. Suppose

f (x) =
n

∑
i=1

aixi ∈ kerϕ.

Then, f (a) = 0 for all a ∈ F . By (ii) of Corollary 3.1, the result follows.

Theorem 3.1. We have

R is a UFD if and only if R [x] is a UFD.

So, F [x1, . . . ,xn] is a UFD for a field F .

Now, we shall consider some irreducible polynomials in F [x] and construct some interesting fields.
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Lemma 3.1. Let F be a field and f (x) ∈ F [x] be of degree 2 or 3. Then,

f (x) is reducible if and only if f (x) has a root in F.

Example 3.2. We have the factorisation

x2 +3x+4 = (x−3)(x−5) in Z/11Z.

To see why, working from right to left,

(x−3)(x−5) = x2 −8x+15 = x2 +3x+4.

Example 3.3. Suppose F = Z/2Z and f (x) = x2 +x+1 ∈ F [x]. Since deg f = 2, by Lemma 3.1, f

is irreducible so F [x]/( f (x)) is a field. In fact, F [x]/( f (x)) is an F-vector space with basis
{

1,x
}

and the vector space has cardinality 4. So, F is a field with 4 elements.

3.2. Irreducibility Criteria

Definition 3.2 (content and primitive polynomial). Let

f (x) = a0 +a1x+ . . .+anxn be a non-zero polynomial in R [x] .

Then, gcd(a0,a1, . . . ,an) is known as the content of f (x), denoted by cont f . We say that

f (x) ∈ R [x] is a primitive polynomial if cont f is a unit in R.

Lemma 3.2. Let R be a UFD. If

g(x) and h(x) are primitive in R [x] then f (x) = g(x)h(x) is also primitive in R [x] .

Lemma 3.3 (Gauss’ lemma). If R be a UFD with field of fractions Q and let f (x) ∈ R [x] be

primitive. If

f (x) is reducible in Q [x] then f (x) is reducible in R [x] .

Corollary 3.2. Let R be a UFD with field of fractions Q. Then,

f (x) ∈ R [x] is reducible in Q [x] if and only if f (x) is reducible in R [x] .

Lemma 3.4. Let R be a UFD. Then, R [x] is a UFD.

Corollary 3.3. If R is a UFD, then R [x1, . . . ,xn] is a UFD. In particular, Z [x] is a UFD.

We consider irreducible polynomials in R [x] for an arbitrary integral domain R. We are mainly

interested in Z [x] actually.
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Lemma 3.5. Let R be an integral domain with a proper ideal I. Let p(x) ∈ R [x] be monic and

non-constant. Then,

p(x) is irreducible over R/I [x] implies p(x) is irreducible over R [x] .

Example 3.4. The polynomial x2+x+1 is irreducible over Z [x] since it is irreducible over Z/2Z [x].

Example 3.5. The polynomial x2 +1 is irreducible over Z [x] since it is irreducible over Z/3Z [x].

Lemma 3.6. Let P be a prime ideal in an integral domain R. Let

f (x) = xn +an−1xn−1 + . . .+a0 ∈ R [x] be monic and non-constant.

Suppose an−1, . . . ,a0 are all in P but a0 is not in P2. Then, f (x) is irreducible over R [x].

Corollary 3.4 (Eisenstein’s cirterion). Let

f (x) = xn +an−1xn−1 + . . .+a0 ∈ Z [x] be monic and non-constant.

Suppose p | an−1, . . . ,a 0 but p2 does not divide a0 for some prime p. Then, f (x) is irreducible

over Z [x].

Example 3.6. The polynomial x2 +4x+2 is irreducible over Z [x]. To see why, suppose

there exist polynomials f (x) ,g(x) ∈ Z [x] such that x2 +4x+2 = f (x)g(x) .

This forces f and g to be monic linear polynomials. In particular, set f (x) = x+ c and g(x) = x+d

for some c,d ∈ Z. Then,

f (x)g(x) = x2 +(c+d)x+ cd

which implies c+d = 4 and cd = 2. This pair of equations does not have integer solutions, resulting

in a contradiction.

Example 3.7. Let p ∈ Z be a prime. Then,

xn − p is irreducible over Z [x] .

Example 3.8. Define R = R [x] [y] = R [x,y]. Then, yn − x is irreducible over R. As such, noting that

R/(x)∼= R [y] is an integral domain,

it follows that x is prime. Knowing that R [x,y] is a UFD (use Corollary 3.3, where we note that R is

a UFD), then yn − x is a prime, so R/(yn − x) is an integral domain.

Lemma 3.7. Let R be a commutative ring with multiplicative identity 1. Then,

R is Noetherian if and only if every ideal is finitely generated.
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Theorem 3.2. Let R be a commutative ring with multiplicative identity 1. Then,

R is Noetherian implies R [x] is Noetherian.
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4. Introduction to Module Theory

4.1. Basic Definitions and Examples

Definition 4.1 (left R-module). Let R be a ring. A left R-module is an Abelian group M

equipped with a map (known as the action of R), defined by

R×M → M where (r,m) 7→ rm = r ·m

such that for any r,s ∈ R and m,n ∈ M, the following hold:

(i) Distributivity: (r+ s)m = rm+ sm

(ii) Associativity: (rs) ·m = r · (sm)

(iii) Distributivity: r (m+n) = rm+ rs

(iv) 1 ·m = m if R has a multiplicative identity

Recall Definition 1.6. Note that an R-module structure on M is equivalent to a ring homomorphism

R → EndAb (M), where Ab is some Abelian group — EndAb (M) denotes the ring of all group

endomorphisms of M (i.e. homomorphisms from M to itself). We also require

1R maps to the identity map on M if 1R exists.

Definition 4.2 (right R-module). Let R be a ring. A right R-module is an Abelian group M

equipped with a map (known as the action of R), defined by

M×R → M where (m,r) 7→ mr = m · r

such that for any r,s ∈ R and m,n ∈ M, the following hold:

(i) Distributivity: m(r+ s) = mr+ms

(ii) Associativity: m · (rs) = (mr) · s
(iii) Distributivity: (m+n)r = mr+nr

(iv) m ·1 = m if R has a multiplicative identity

Although Definitions 4.1 and 4.2 hold, we often only consider left actions, or left modules over R

(Definition 4.1). We just refer to them as R-actions or R-modules. Note that

R is commutative implies left action is the same as right action.

Example 4.1. We have the trivial 0 module for any ring R.

Example 4.2. For any field F , the F-modules are just the F-vector spaces.

Example 4.3. For any Abelian group M, we say that M is a Z-module.

Example 4.4. Let R be a ring. Then,

R is a left R-module via left multiplication and a right R-module via right multiplication.
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Example 4.5. Let I be a left ideal of R. Then, I is a left R-module. Actually, I is a left R-submodule

of R.

Example 4.6. Let I be a left ideal of R. Then, R/I (the quotient Abelian group) is a left R-module.

Definition 4.3 (submodule). Let M be an R-module. Then, a subgroup N ⊆ M is an

R-submodule of M if N is closed under the R-action.

Example 4.7. The zero module is a trivial submodule of any R-module.

Example 4.8. Let M be an Abelian group or equivalently a Z-module (Example 4.3). Then, a

subgroup of N is the same as a Z-submodule of M.

Example 4.9. Let S ⊆ R be a subring. Then,

R is an S-submodule and S is an S-submodule of R.

Example 4.10. Let F be a field. An F [x]-module V is the same as an F-vector space equipped with

a linear map T : V →V (same as a linear transformation). An F [x]-submodule of V is an F-subspace

of V that is stable under the T action.

Example 4.11. Let I be a left ideal of R. Then, R/I is a left module.

Lemma 4.1. Let R and S be commutative rings with multiplicative identity 1. Let ϕ : R → S

be a ring homomorphism such that 1R 7→ 1S. Let M be an S-module. Then,

M is an R-module via the action r ·m = ϕ (r) ·m.

Proposition 4.1. Let R be a commutative ring with multiplicative identity 1. Let M be an

R-module.

(i) We have

0 ·m = 0 and −1 ·m =−m for any m ∈ M

The intersection of any non-empty collection of submodules of M is also an R-submodule

(ii) The annihilator of M in R,

AnnM (R) = {r ∈ R : rm = 0 for any m ∈ M} is an ideal of R

(iii) Let z ∈ Z (R) (center of R). Then,

zM = {zm : m ∈ M} is an R-submodule of M.

Corollary 4.1. For any commutative ring with multiplicative identity 1, let M be an R-module.

Let I ⊆ AnnM (R) be an ideal. Then, M is an R/I-module.
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Proposition 4.2. Let R be a commutative ring with multiplicative identity 1. Let M be an

R-module and N ⊆ R. Then,

the set of finite R-linear combinations RN =

{
∑

finite
an : a ∈ R,n ∈ N

}
is an R-submodule of M.

In particular, RN is called the R-submodule generated by N.

Proposition 4.3. Let R be a commutative ring with multiplicative identity 1. Let M1, . . . ,Mn

be R-submodules of an R-module M. We define the R-submodule of M as follows:

M1 + . . .+Mn = {m1 + . . .+mn ∈ M : mi ∈ Mi,n ∈ M}

4.2. Quotient Modules and Module Homomorphisms

Definition 4.4 (module homomorphism). Let M and N be R-modules. An R-module

homomorphism is a map ϕ : M → N satisfying the following properties:

ϕ (x+ y) = ϕ (x)+ϕ (y) for x,y ∈ M and ϕ (rx) = rϕ (x) for r ∈ R,x ∈ M.

Definition 4.5 (module isomorphism). An R-module homomorphism ϕ : M → N is an

isomorphism if it is a bijection, i.e. there also exists an R-module homomorphism ψ : N → M

such that

ϕ ◦ψ = idN and ψ ◦ϕ = idM .

Definition 4.6 (kernel and image). Let ϕ : M → N be an R-module homomorphism. Then,

define

kerϕ = {m ∈ M : ϕ (m) = 0 in N}

imϕ = ϕ (M) = {ϕ (m) in N : m ∈ M}

These sets are R-submodules of M and N respectively.

Definition 4.7 (endomorphism ring). Define

HomR (M,N) to be the set of R-module homomorphisms from M to N.

We often write EndR (M) = HomR (M,M).

We collect some basic results about module homomorphisms.
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Proposition 4.4. Let M and N be R-modules for a commutative ring R with multiplicative

identity 1. If ϕ,ψ ∈ HomR (M,N), then

ϕ +ψ : M → N defined by (ϕ +ψ)(m) = ϕ (m)+ψ (m)

is also an R-module homomorphism.

Proposition 4.5. Let M,N,L be R-modules for a commutative ring R with multiplicative

identity 1. Suppose

ϕ ∈ HomR (M,N) and ψ ∈ HomR (N,L) .

Then,

ψ ◦ϕ is an R-module homomorphism from M to L.

Proposition 4.6. Let M be an R-module for a commutative ring R with multiplicative identity

1. Then, the map

ϕ : M → M where m 7→ rm for any r ∈ R

is an R-module homomorphism.

Example 4.12. Let M and N be Z-modules. Then, any homomorphism M → N is the same as a

homomorphism of Abelian groups.

Example 4.13. For any field F , let V and W be F-vector spaces. Then, an F-module map from V to

W is just a linear map from V to W .

Example 4.14. For any R-modules M and N, we can define the product module M⊕N = M×N as

the expected one (this is known as the direct sum of M and N which we will formally introduce in

Definition 4.12).

Definition 4.8 (quotient R-module). Let R be a ring. Let M be an R-module with a submodule

N. Define the quotient R-module M/N as follows:

(i) M/N = M/N as Abelian groups

(ii) the R-action is given by

r (m+N) = rm+N for any m ∈ M,r ∈ R.

Moreover,

the natural quotient map π : M → M/N is an R-module homomorphism.

Lemma 4.2 (universal property of the quotient). Let R be a ring. Let M be an R-module with

a submodule N. Let L be another R-module. Then, for any R-module homomorphism ϕ : M → L
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such that ϕ (N) = 0,

there exists a unique R-module homomorphism ϕ : M/N → L such that Figure 3 commutes.

M L

M/N

ϕ

π
ϕ

Figure 3: Universal property of the quotient

Theorem 4.1 (isomorphism theorems). Let R be a ring with multiplicative identity 1. Then,

the following hold:

(1) Let M and N be R-modules and ϕ : M → N be an R-module homomorphism. Then,

M/kerM ∼= ϕ (M) .

(2) Let M,N be submodules of L. Then,

(M+N)/M ∼= N/(M∩N) .

Here,

M+N = {m+n ∈ L : m ∈ M,n ∈ N} is an R-submodule of L(Proposition 4.3).

(3) Let M,N be submodules of L such that N ⊆ M. Then,

L/M ∼= (L/N)/(M/N) .

(4) Let M and N be R-modules such that N ⊆ M. Then, we have a bijection between

the set of submodules of M containing N and the set of submodules of M/N

via the quotient map π : M → M/N.

Definition 4.9 (R-algebra). Let R be a commutative ring with multiplicative identity 1. Then,

an R-algebra A is a ring with multiplicative identity 1 equipped with

a ring homomorphism f : R → A 1 7→ 1 such that f (R) ∈ Z (A) .

Example 4.15. A ring with multiplicative identity 1 is just a Z-algebra.
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Definition 4.10. Let F be a field. An F-algebra R is finite-dimensional if R is a finite-

dimensional F-vector space.

Example 4.16. Let F be a field. The polynomial ring F [x] is an F-algebra.

Example 4.17. Let G be a finite group. Then, R [G] is an R-algebra. Furthermore, if R is a field, then

R [G] is a finite-dimensional F-algebra.

Example 4.18. Let R be a commutative ring with multiplicative identity 1. Let M be an R-module.

Then, EndR (M) is an R-algebra.

Definition 4.11 (simple module). Let R be a ring with multiplicative identity 1. Let M be an

R-module. Then,

M is simple if M ̸= 0 such that 0 and M are the only submodules of M.

Example 4.19. All 1-dimensional vector spaces over a field F are simple modules. Recall that an

F-module is simply an F-vector space. We claim that

a non-zero vector space V over F is simple if and only if dim(V ) = 1.

So, if dim(V ) = 1, then there are no proper non-zero subspaces. Hence, V is a simple F-module. On

the other hand, if dim(V ) > 1, then any non-zero vector generates a 1-dimensional subspace, which

is a proper non-zero submodule.

Example 4.20. Take R = Z. Then, the simple Z-modules are Z/pZ for p prime. Then, we have

EndZ (Z/pZ)∼= Z/pZ as rings.

Example 4.21. Let F be a field and R=Mn×n (F) be the matrix ring. Then, Fn is a simple R-module

via matrix multiplication.

Lemma 4.3 (Schur’s lemma). Let R be a ring with multiplicative identity 1. Let M and N be

simple R-modules. Then,

any R-module homomorphism ϕ : M → N is either 0 or an isomorphism.

In particular, EndR (M) is a division ring.

4.3. Generation of Modules, Direct Sums, and Free Modules

Definition 4.12 (direct sum). Let R be a ring with multiplicative identity 1. Let M1, . . . ,Mn

be R-modules. Define their direct sum

M = M1 ⊕ . . .⊕Mn =
n⊕

i=1

Mi
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as follows:

M = M1 × . . .×Mn as sets and r (m1, . . . ,mn) = (rm1, . . . ,rmn) for the R-action.

In relation to Definition 4.12, the more precise definition of direct sums and direct products involve

categories. Finite direct sums and finite direct products are the same for R-modules.

Example 4.22. Rn = R⊕ . . .⊕R is called the free R-module (simply said, a free module is one which

has a basis) of rank n. We often write

ei = (0, . . . ,1, . . . ,0) where 1 is in the ith component.

Example 4.23. By the Chinese remainder theorem (Theorem 2.4), we have

Z/6Z∼= Z/2Z×Z/3Z as Z-modules.

Lemma 4.4. Let R be a ring with multiplicative identity 1. Let M be an R-module and

m1, . . . ,mn ∈ M. Then,

there exists a unique R-module homomorphism ϕ : Rn → M such that ei 7→ mi.

We call Rn the free R-module of rank n.

Lemma 4.5 (universal property of direct sum). Let R be a ring with multiplicative identity 1.

Let N,M1, . . . ,Mn be R-modules. Then, for any R-module map ϕi : Mi → N,

there exists a unique R-module map ϕ :
n⊕

i=1

Mi → N such that Figure 4 commutes.

Mi

n⊕
i=1

Mi

N

ϕi ϕ

Figure 4: Universal property of direct sum

Proposition 4.7. Let R be a ring with multiplicative identity 1. Let M be an R-module with

submodules N1, . . . ,Nk. The following are equivalent:

(i) The natural map induced by the embeddings

k⊕
i=1

Ni →
k

∑
i=1

Ni is an isomorphism
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(ii) Any x ∈ N1 + . . .+Nk can be uniquely written as

x = a1 + . . .+ak where ai ∈ Ni

(iii) For any j,

N j ∩∑
i ̸= j

Ni = 0

Theorem 4.2 (universal property for free modules). Let R be a ring with multiplicative identity

1. Let A = {a1, . . . ,an} be a finite set. The free R-module over A is an R-module F (A) together

with a map of sets ι : A → F (A) such thart for any R-module M and a map of sets ϕA : A → M,

we have

a unique R-module homomorphism ϕ : F (A)→ M such that Figure 5 commutes.

The free module exists and is unique up to isomorphism. Actually,

F (A)∼=
n⊕

i=1

R.

A F (A)

M

ϕA
ϕ

Figure 5: Universal property for free modules

Lemma 4.6. Let R be a ring with multiplicative identity 1. Also, let

A1, . . . ,An be R-modules with respective submodules B1, . . . ,Bn.

Then, we have the following isomorphism:

n⊕
i=1

Ai/
n⊕

i=1

Bi ∼=
⊕

Ai/Bi

Proof. We will only prove the case where n = 2. We have the following commutative diagram:

A1 A1 ⊕A2 A2

A1/B1 A1/B1 ⊕A2/B2 A2/B2

ϕ
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Here, ϕ is surjective with kernel B1 ⊕B2. The result follows by the first isomorphism theorem ((1) of

Theorem 4.1).

Corollary 4.2. Let R be a ring with multiplicative identity 1 and a left ideal I. Then, we have

the following isomorphism of R-modules:

Rn/IRn ∼= R/I ⊕ . . .R/I which consists of n copies.

Theorem 4.3. Let R be a commutative ring with multiplicative identity 1. Then,

Rn ∼= Rm if and only if n = m.

Theorem 4.4 (universal property for arbitrary direct sum of modules). Let R be a ring with

multiplicative identity 1. Let Mc be a collection of R-modules for, i.e. c ∈ I for some index set

I. Their direct sum is an R-module

⊕
c∈I

Mc together with ιc : Mc →
⊕
c∈I

Mc

such that for any R-module N and R-module map ϕc : Mc → N, there exists

a unique R-module homomorphism ϕ :
⊕
c∈I

Mc → N such that Figure 6 commutes.

The aforementioned direct sum exists and is unique up to isomorphism.

Mc

⊕
c∈I

Mc

N

ϕc
ϕ

Figure 6: Universal property for arbitrary direct sum of modules

Theorem 4.5 (universal property for arbitrary direct product of modules). Let R be a ring

with multiplicative identity 1. Let Mc be a collection of R-modules for, i.e. c ∈ I for some index

set I. Their direct product is an R-module

πc∈IMc together with πc : ∏
c∈I

Mc → Mc

such that for any R-module N and R-module map ϕc : N → Mc, there exists

a unique R-module homomorphism ϕ : N → ∏
c∈I

Mc such that Figure 7 commutes.

The aforementioned direct product exists and is unique up to isomorphism.
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Mc ∏c∈I Mc

N
ϕc

ϕ

Figure 7: Universal property for arbitrary direct product of modules

4.4. Tensor Product of Modules

In this section, we assume that our rings R have a multiplicative identity 1. We often consider

both left modules and right modules. We start with the motivation of the tensor product ⊗ with two

examples (Examples 4.24 and 4.25).

Example 4.24. Let V =R3 and W =R3 be two 3-dimensional vector spaces over R. We shall write

elements of V and W as row matrices, i.e. (v1,v2,v3) and (w1,w2,w3) respectively. Then, we know

that V ⊕W is also an R-vector space of dimension 3+3 = 6. Recall that

V ⊕W = {(v,w) : v ∈V,w ∈W}=
{
(v1,v2,v3,w1,w2,w3) ∈ R6

}
.

We now define a new vector space V ⊗RW as follows:

V ⊗RW =

 ∑
finite


v1

v2

v3

 · (w1,w2,w3) = ∑
finite


v1w1 v1w2 v1w3

v2w1 v2w2 v2w3

v3w1 v3w2 v3w3


 .

Here, (v1,v2,v3) ∈V and (w1,w2,w3) ∈W .

As vector spaces, we have

V ⊗RW ∼=M3×3 (R) which is of dimension 3×3 = 9.

If we write

Example 4.25.
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5. Vector Spaces

5.1. Definitions and Basic Theory

We will not go through much in this chapter as they have already covered in MA2001 and MA2101.

Theorem 5.1. Let F be a field. Then,

Fn ∼= Fm if and only if n = m.

In other words, two finite-dimensional vector spaces are isomorphic if and only if they have the

same dimension.

5.2. The Matrix of a Linear Transformation
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6. Modules over Principal Ideal Domains

6.1. The Basic Theory

Theorem 6.1 (submodule of free module is also free). Let R be a PID and M be a free

R-module of rank n and N be an R-submodule of M. Then,

N is also free with rank(N)≤ rank(M)

Compare and contrast Theorem 6.1 with a known result from MA2001 — say we have a finite-

dimensional vector space V of rank n (which means any basis of V has n linearly independent vectors

that span the whole space). If U is a subspace of V , then

U also has a basis such that rank(U)≤ rank(V ) = n.

Actually, the proof of the first result on U having a basis is pretty much universal — it is merely a

consequence of Zorn’s lemma.

Definition 6.1 (torsion). Let M be an R-module over an integral domain R. An element m∈M

is called torsion if

rm = 0 for some r ∈ R where r ̸= 0.

The set of torsion elements is denoted by TorM.

(i) An R-module M is torsion-free if TorM = 0

(ii) An R-module M is a torsion module if torM = M

Theorem 6.2. Let R be a PID and M be a finitely generated R module. Then,

M is free if and only if M is torsion-free.

Let R be a PID. Recall from Theorem 2.3 that R is also a UFD. We wish to study the diagonalisation

of matrices with entries in R, or equivalently,

R-module homomorphisms ϕ =
(
ai j

)
∈Mn×m (R) : R⊕m → R⊕n.

Example 6.1. Let R = Q. Then, recall the usual elementary row operations (which are invertible)

from MA2001. Say we have[
5 7 9

2 3 5

]
−→

[
1 7 9

2/5 3 5

]
−→

[
1 0 0

2/5 1/5 7/5

]

−→

[
1 0 0

0 1/5 7/5

]
−→

[
1 0 0

0 1/5 0

]
Here, we performed scalar multiplications, elementary row operations, and elementary column

operations. We need more complicated operations for a general PID R.
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We have the following interesting fact about PIDs (Lemma 6.1).

Lemma 6.1. For any PID R, let a1, . . . ,an ∈ R such that (α) = (a1, . . . ,an). Then, up to

multiplication by units, we have

α = gcd(a1, . . . ,an) = gcd(a1,gcd(a2, . . . ,an)) .

Lemma 6.2. Let R be a PID. Suppose a,b ∈ R such that gcd(a,b) = 1. By Bézout’s identity

(works for arbitrary PID), there exist c,d ∈ R such that ac+bd = 1. Then,[
a b

−d c

]
,

[
a −d

b c

]
∈M2×2 (R) are invertible with inverses

[
c −b

d a

]
,

[
c d

−b a

]
respectively.

Corollary 6.1. Let a,b ∈ R and define α = gcd(a,b). Then, there exist S,T ∈ GL2 (R) such

that [
a b

⋆ ⋆

]
S =

[
α 0

⋆ ⋆

]
and T

[
a ⋆

b ⋆

]
=

[
α ⋆

0 ⋆

]
.

Here, ⋆ denotes an arbitrary element in R.

Lemma 6.3. Let R be a PID. Let a,b ∈ R. Then, there exist S,T ∈ GL2 (R) such that

T

[
a 0

0 b

]
S =

[
α 0

0 β

]
where α | β .

Actually,

α = gcd(a,b) and αβ = ab = det

[
a 0

0 b

]
uniquely up to multiplication by units.

Theorem 6.3 (Smith normal form). There exist T ∈Mn×n (R) and S ∈Mm×m (R) such that

TAS = diag(α1, . . . ,αr,0, . . . ,0) such that αi | αi+1.

The αi’s are the invariant factors of A and the RHS is the Smith normal form of A.

Theorem 6.4 (structure theorem for finitely generated modules over a PID). Let M be a

finitely generated module over a PID R. We know that

M ∼= coker(ϕ : Rm → Rn) since M is finitely generated and finitely presented.
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Let S : Rn → Rn and T : Rm → Rm be isomorphisms of R-modules. Then, we have the following

isomorphism:

cokerϕ ∼= M ∼= coker(S◦ϕ ◦T ) .

Theorem 6.5. Let M be a finitely generated module over a PID R. Then,

M ∼= Rk ⊕R/(α1)⊕ . . .⊕R(αr) where αi | αi+1.

The elements αi are the invariant factors of M.

Theorem 6.6. Let M be a finitely generated module over a PID R. Then,

M ∼= Rk ⊕R/
(

pa1
1
)
⊕ . . .⊕R/(pas

s )

for not necessarily distinct prime elements pi in R. The elements pai
i are called the elementary

factors of M.

Lemma 6.4. Let ϕ : M → M be an R-module homomorphism. Then,

ϕ (TorM)⊆ TorN.

Lemma 6.5. Let R be a PID. Let M be a finitely generated R-module. Then,

M is free if and only if M is torsion free.

Example 6.2. Let M be a finitely generated Abelian group. Then,

M ∼= Zk ⊕Z/a1Z⊕ . . .⊕Z/arZ where ai | ai+1 in Z.

Example 6.3. Let F be a field. Let G ⊆ F⋆ be a finite subgroup. Then, G is cyclic.

Example 6.4. The Abelian group of rational numbers Q is not finitely generated as a Z-module. It

is torsion free but not free.

Example 6.5. Let M be an Abelian group generated by x and y subjected to the relation 2x+5y = 0

and 3x+7y = 0. Then, we wish to determine the structure of M. Consider the map

R2 → M where (a,b) 7→ ax+by.

The kernel is generated by (2,5) and (3,7). We consider another map

ϕ : R2 → R2 where (a,b) 7→ a(2,5)+b(3,7) = (2a+3b,5a+7b) .

Then, we have M ∼= cokerϕ . The smith normal form of ϕ is[
1 0

0 −1

]
so M ∼= 0.
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Lemma 6.6. Let p and q be distinct primes in R. Let F = R/(p) be a field. Then, the following

hold:

(i) Let M = R/(qa) for a ≥ 1. As F-modules, we have

pM/pt+1M ∼= 0.

(ii) Let M = R/(pa) for a ≥ 1. Then, as F-modules,

ptM/pt+1M ∼=

F if t < a;

0 if t ≥ a.

(iii) Let M = R/(qa)⊕R/
(

pb) for a,b ≥ 1. Then, as F-modules,

ptM/pt+1M ∼=

F if t < a;

0 if t ≥ a.

Theorem 6.7. Let

M ∼= R/
(

pa1
1
)
⊕ . . .⊕R/(pas

s )∼= R/
(

qb1
1

)
⊕ . . .⊕R/

(
qbr

r

)
as modules over a PID R for non-necessarily distinct primes pi and qi. Then, the elementary

factors are unique up to permutation and multiplication by units.

Corollary 6.2. Let ϕ ∈ Mm×n (R) for a PID R. Then, the invariant factors of the Smith

normal form of ϕ is unique up to permutation and multiplication by units. In other words, it

is independent of the invertible matrices S and T we used.

6.2. The Rational Canonical Form

We first recall some concepts from Linear Algebra. Let F be a field and let V be a finite-dimensional

F [x]-module. Suppose x acts on V via a linear transformation T . Assume that dimF V = n and fix an

F-basis {e1, . . . ,en} of V . We then have T =
(
ai j

)
∈ Mn×n (F). We write I ∈ Mn×n (F) for the

identity matrix.

Note that the set {e1, . . . ,en} forms a basis for the F-module V . However, it is only a set of generators

for the F [x]-module V . Hence, we have the following isomorphism of F [x]-modules:

V ∼= F [x]/( f1 (x))⊕ . . .⊕F [x]/( fr (x)) where fi | fi+1

Let

V ∼= F [x]/( f (x)) where f (x) = xn +an−1xn−1 + . . .+a0.
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We consider the basis
{

1,x,x2, . . . ,xn−1} under the isomorphism. With respect to this basis, x acts via

the matrix

T =



0 0 . . . . . . −a0

1 0 . . . . . . −a1

0 1 . . . . . . −a2
...

... . . . ...
...

0 0 . . . 1 −an−1


.

By direct computation, we have det(xI−T) = f (x).

Definition 6.2 (rational canonical form). The rational canonical form (RCF) of a matrix T is

the matrix 
T1

T2
. . .


where each Ti is of the form as mentioned earlier with respect to the F [x]-submodule

F [x]/( fi (x)).

Proposition 6.1. Let A,B ∈Mn×n (F).

(i) The RCF of A is unique

(ii) A is similar to its RCF

(iii) A is similar to B if and only if they have the same RCF

Example 6.6. We shall compute the RCF of the matirx

A=


2 −2 14

0 3 −7

0 0 2

 in M3×3 (Q) .

Solution. We have

xI−A =


x−2 2 −14

0 x−3 7

0 0 x−2

 .

Let T1 denote the gcd of all 1×1 minors, T1T2 denote the gcd of all 2×2 minors and T1T2T3 denote

det(xI−A).

We first compute T1. Note that all entries of xI−A are

x−2,2,−14,x−3,7,x−2 whose gcd is 1.

So, T1 = 1. We then look at all 2×2 sub-determinants. One is able to determine that T1T2 = x−2, so

T2 = x−2. Lastly, T3 = (x−2)(x−3).
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The Smith normal form of xI−A is the diagonal matrix diag(1,x−2,(x−2)(x−3)). The RCF of

A is a block-diagonal matrix whose blocks are the companion matrices of the invariant factors. As

our invariant factors are 1,x−2,(x−2)(x−3), the companion blocks we need in the RCF are for the

polynomials x−2 and (x−2)(x−3).

Hence, the RCF is a direct sum of

a 1×1 companion block for x−2 and a 2×2 companion block for x2 −5x+6.

Note that

for a quadratic polynomial x2 +ax+b its companion matrix is

[
0 −b

1 −a

]
.

As such, the RCF of A is 
2 0 0

0 0 −6

0 1 5

 .

□

6.3. The Jordan Canonical Form

Now, we talk about the characteristic polynomial and minimal polynomial of a square matrix.

Definition 6.3 (minimal polynomial). Let T ∈Mn×n (F). We consider the F [x]-module V =

Fn, where x acts as T . Let AnnF [x] (V ) = (p(x)). Then, p(x) is the minimal polynomial (often

assumed to be monic) of T .

In fact, a number of properties of the characteristic polynomial and minimal polynomial have

already been covered in MA2101.

Definition 6.4 (algberaically closed field). Let F be a field. F is algebraically closed if every

non-constant polynomial in F [x] has a root in F .

Example 6.7. C is algebraically closed, while Q and R are not.

Lemma 6.7. Let F be an algebraically closed field. Then, the following hold:

(i) F is infinite

(ii) If f (x) ∈ F [x] is irreducible, then

f (x) = k (x−a) for some a ∈ F and k ∈ F×.
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Lemma 6.8. Let F be an algebraically closed field. Let T ∈ Mn×n (F). Then, T has an

eigenvalue.

Example 6.8. The matrix[
0 1

−1 0

]
∈M2×2 (R) has no eigenvalue in R.

Example 6.9. Let V ∼= F [x]/(x−a)n for some a ∈ F . Then, we consider the following F-basis of

V via the isomorphism:

1,x−λ ,(x−λ )2 , . . . ,(x−λ )n−1

Then, x acts on the matrix 
λ 1 0 0 . . . 0

0 λ 1 0 . . . 0
...

...
...

... . . . ...

0 0 0 0 . . . λ


Let T ∈Mn×n (F) for some algebraically closed field F . We consider V = Fn as an F [x]-module

where x acts on T . Then, we have

V ∼= F [x]/((x−λ1)
a1)⊕ . . .⊕F [x]/((x−λr)

ar)

Definition 6.5 (Jordan canonical form). The Jordan canonical form (JCF) of a matrix is

J =


T1

T2
. . .


where each Ti is of the form in the example with respect to the F [x]-submodule F [x]/((−λi)

ai).

Proposition 6.2. Let A,B ∈Mn×n (F) for an algebraically closed field F .

(i) The JCF of A is unique up to permutation

(ii) A is similar to its JCF

(iii) A is similar to B if and only if they have the same JCF up to permutation

Example 6.10. One can compute the JCF of the matrix

A=


2 −2 14

0 3 −7

0 0 2

 in M3×3 (C) .

The JCF is

J =


2 0 0

0 2 0

0 0 3

 .
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Since each Jordan block is of size 1, A is said to be diagonalisable over C.

Example 6.11. The JCF of

A =

[
0 1

−1 0

]
∈ M2×2 (C) is J =

[
i 0

0 −i

]
which is diagonalisable over C as each Jordan block is of size 1.

Example 6.12. The JCF of

A =

[
0 −1

1 2

]
∈ M2×2 (C) is J =

[
1 1

0 1

]
which contains one Jordan block of size 2. Hence, A is not diagonalisable over C.

Corollary 6.3. Let F be an algebraically closed field. Let T ∈ Mn×n (F) with a Jordan

canonical form J.

(i) T is diagonalisable over F if and only if J is a diagonal matrix

(ii) T is diagonalizable over F if and only if its minimal polynomial does not have multiple

roots

Proposition 6.3. Let A,B ∈Mn×n (F). Let V and W be F [x]-modules, where x acts on A and

B, respectively. Then, the following are equivalent:

(i) A and B are similar

(ii) A and B have the same RCF

(iii) V ∼=W

(iv) V and W have the same invariant factors

(v) V and W have the same elementary factors

(vi) If F is algebraically closed, then A and B have the same JCF

Definition 6.6 (nilpotent matrix). Let F be a field. A matrix A ∈Mn×n (F) is nilpotent if

there exists k ∈ N such that Ak = 0.

We wish to classify the nilpotent orbits, i.e. orbits consisting of nilpotent matrices.

Lemma 6.9. Let A ∈Mn×n (F) be nilpotent. The minimal polynomial mA (x) = xk for some

k ∈ N and the characteristic polynomial is cA (x) = xn.

Corollary 6.4. The set of nilpotent orbits on Mn×n (F) is in bijection with the set of partitions

of n.

We then consider the conjugacy classes in GL2 (F2), where F2 is the finite field with 2 elements. We

wish to determine the number of conjugacy classes and find a representative of each class.
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Proposition 6.4. There are 3 conjugacy classes in GL2 (F2). Their elementary factors are{
(x−1)2

}
,{x−1,x−1} ,

{
x2 + x+1

}
.

We can find the representative using either the JCF or the RCF.

Next, we consider orbits of GL3 (Q) on the set

S =
{

A ∈ GL3 (Q) : A6 = I
}
.

The elements in this set are of order 2,3,6. We consider the factorisation

x6 −1 =
(
x3 +1

)(
x3 −1

)
= (x+1)

(
x2 − x+1

)
(x−1)

(
x2 + x+1

)
= (x−1)(x+1)

(
x2 − x+1

)(
x2 + x+1

)
Let A ∈ S. Then, the minimal polynomial mA (x) of A must divide x6 − 1. We also know that

degmA (x)≤ 3. As such, we have the following possibilities (at first glance) for mA (x):

(1) x−1

(2) x+1

(3) x2 − x+1

(4) x2 + x+1

(5) (x−1)(x+1)

(6) (x−1)
(
x2 − x+1

)
(7) (x−1)

(
x2 + x+1

)
(8) (x+1)

(
X2 − x+1

)
(9) (x+1)

(
x2 + x+1

)
By Proposition 6.4, we shall classify the F [x]-modules of F-dimension 3 with the largest invariant

factors being mA (x). They are classified by the invariant factors. Consequently, the invariant factors

corresponding to each case are as follows:

(1) x−1,x−1,x−1

(2) x+1,x+1,x+1

(3) Impossible

(4) Impossible

(5) x−1,(x−1)(x+1) or x+1,(x−1)(x+1)

(6) (x−1)
(
x2 − x+1

)
(7) (x−1)

(
x2 + x+1

)
(8) (x+1)

(
x2 − x+1

)
(9) (x+1)

(
x2 + x+1

)

We know that the orbits of A are uniquely determined by the invariant factors. So, there are 7 orbits.
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